

Auf der Siegerstraße bleiben.

Automotive Cluster der Zukunft bauen.

für das Bundesministerium für Verkehr, Innovation und Technologie (BMVIT) und die

Vereinigung der Österreichischen Industrie (IV)

Inhaltsverzeichnis

	AUFGABEN UND ZIELE DER STUDIE	3
\bigcirc	AUSGANGSLAGE	5
$\nearrow \Rightarrow$	EINFLUSSFAKTOREN UND TRENDS	10
	ANTRIEBSTECHNOLOGIEN UND SZENARIEN	15
2	WIRTSCHAFTLICHE EFFEKTE 2030	22
	RESÜMEE UND HANDLUNGSABLEITUNGEN	29

Aufgaben und Ziele der Studie

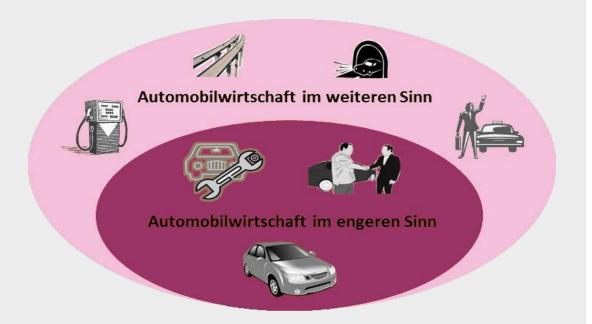
Aufgaben der Studie

Fokus auf 3 elementare Zielsetzungen

- Entwicklung belastbarer Aussagen zum Einsatz neuer Antriebstechnologien im Jahr 2030
- Abschätzung der wirtschaftlichen Implikationen, die sich durch den Strukturwandel für die österreichische Automobilwirtschaft ergeben werden.

Ableitungen für Österreichs Automobilwirtschaft und die Automobilindustrie, welche bei der Gestaltung der künftigen Rahmenbedingungen zu beachten sind.

Ausgangslage


- Abgrenzung/Definition
- Methodik
- Ökonomischer Fußabdruck® der Automobilwirtschaft

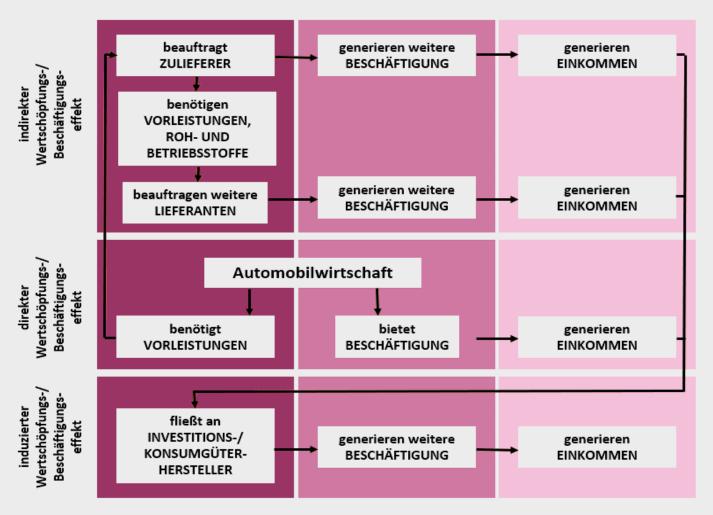
AUSGANGSLAGE

Querschnittsmaterie Automobilwirtschaft

Abgrenzung und Definition

Automobilindustrie: ÖNACE-Sektor 29

- Herstellung von Kraftwagen und –motoren
- Herstellung von Karosserien, Aufbauten und Anhängern
- Herstellung von Teilen und Zubehör für Kraftwagen


Automobilwirtschaft

- Automobilindustrie
- Handel von Kraftfahrzeugen
- Instandhaltung und Reparatur von Kraftfahrzeugen
- Maschinenbau
- Straßen-, Brücken- und Tunnelbau
- Tankstellen
- Landverkehr
- Versicherungen
- Vermietung beweglicher Sachen (Autovermietung)
- Öffentliche Verwaltung
- Fahrschulen
- Vorleistungsbranchen (Gummi, Glas, Metall,...)

COUNCIL4 ROBUST DECISION MAKING

Methodik

Für eine vollständiges Bild ist es nötig, alle Effekte zu betrachten.

Direkte Effekte

Indirekte Effekte

 Entlang der vorgelagerten Wertschöpfungskette

Induzierte Effekte

 Einkommenseffekte entlang der nachgelagerten Wertschöpfungskette

AUSGANGSLAGE

COUNCIL4 ROBUST DECISION MAKING

Methodik: Satellitenkonto

Input-Output-Analyse: Quantifizierung der realwirtschaftlichen Bedeutung

		Vorleistungslieferungen					1	En	dnachfra	ige			
		Gut 1'	Gut 2'	Gut 3	Gut S1 Automobil	Gut S2 Automobil		Privater Konsum	Staatlicher Konsum		Lagerveränderungen, Investitionen	Exporte	Gesamtverendung
	Gut 1'	1	1	1	0	1	4	3	0	3	3	1	11
	Gut 2'	1	11	10	1	2	25	6	0	6	7	1	39
	Gut 3	0	10	10	0	0	20	5	5	10	5	7	<u>42</u>
	Gut S1 Automobil	0	0	0	0	0	0	2	0	2	3	2	7
	Gut S2 Automobil	0	3	0	1	1	5	4	0	4	3	1	13
Heimische \	/orleistungen	2	25	21	2	4	54 / 54	20	5	25	21	12	112
Vorleistungsimporte		1	-3	2	0	1	1						
Vorleistungen gesamt		3	22	23	2	5	55						
	Abschreibungen	1	1	3	0	1	6						
	Steuern	2	2	3	1	2	10						
	Personalkosten	3	11	8	3	3	28						
	Gewinne	1	1	3	1	1	7						
Bruttowertschöpfung		7	15	17	3	7	51						
Produktionswert		10	37	40	7	12	106						
Importe		1	2	2	0	1	6						
Gesamtoutput		11	39	42	7	13	112						

- Herauslösen der automobilspezifischen Sektoren aus der Volkswirtschaftlichen Gesamtrechnung (VGR)
- Basisjahr: 2018
- 75x75 Sektoren mit je 24 automobilspezifischen Erweiterungen (KfZ-Versicherungen, Handel, Tankstellen, uvm.)

Bruttoproduktionswert, Bruttowertschöpfung und Beschäftigung als wesentliche Faktoren

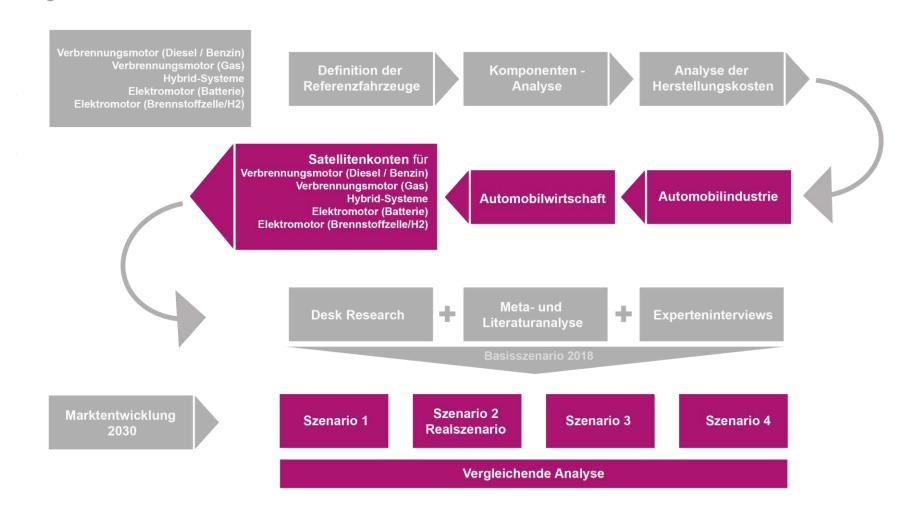
Wertschöpfungsanteil in Österreich 7,6%

Bruttoproduktionswert direkt: 43,7 Mrd. Euro total: 67 Mrd. Euro



Bruttoproduktionswert, Bruttowertschöpfung und Beschäftigung als wesentliche Faktoren

Bruttoproduktionswert, Bruttowertschöpfung und Beschäftigung als wesentliche Faktoren


Bruttoproduktionswert, Bruttowertschöpfung und Beschäftigung als wesentliche Faktoren

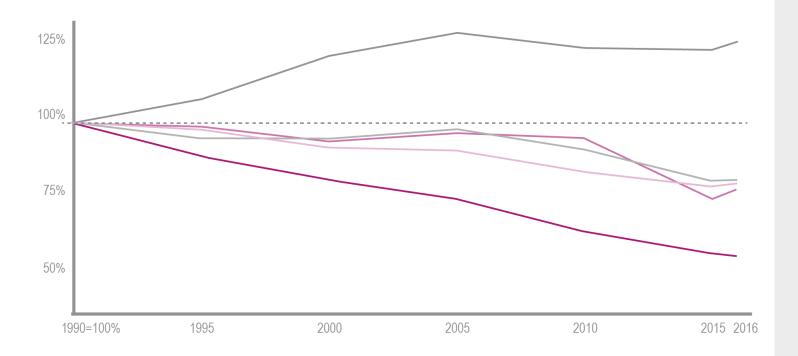
Untersuchungsdesign

Neue Technologien erfordern innovative Modelle

Unabhängige Experteninterviews

Expertenliste

Titel	Name	Kategorie	Institution
Prof.	Han, Zheng	Wissenschaft	Tongji Universität, Chair Professor of Innovation and Entrepreneurship
	Neckermann, Lukas	Industrie	Neckermann Strategic Advisors, Lyft
	Sigl, Kurt	Politik	Bundesverband eMobilität, Präsident und Gründer
Prof.	Herrmann, Andreas	Wissenschaft	Universität St. Gallen, Direktor Institut Customer Insight
	Metzger, Robert	Industrie	eMove360°, Geschäftsführer und Gründer
	Reisinger, Anton	Industrie	ehemaliger Bereichsleiter BMW Clean Energy
	Richter, Maximilian	Wissenschaft	Universität St. Gallen, Doktorand Institut Customer Insight
	Brauer, Gernot	Politik	Autor, Journalist, ehemaliger Head of Strategic Communication BMW
Prof.	Danzer, Michael	Wissenschaft	Universität Bayreuth, Leitung des Bayerischen Zentrums für Batterietechnik
	Walser, Rober	Wissenschaft	Technische Universität München, Masterstudium Batterietechnik
	Kuhnert, Felix	Industrie	PwC, Partner, Global Automotive Lead
	Stürmer, Christoph	Industrie	Chief Marketing Officer (CMO), Clean Energy Global GmbH

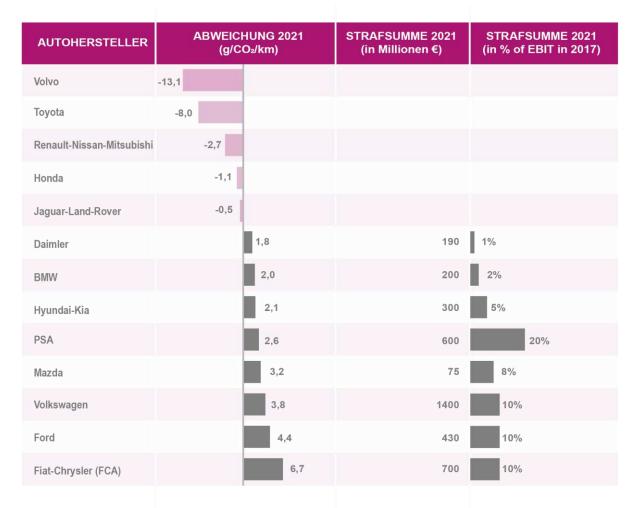

Einflussfaktoren und Trends

- Dekarbonisierung
 - Fahrzeugelektrifizierung
 - Globale Emissionsregulierung
- Autonomes Fahren und alternative Mobilitätskonzepte
- Globale Entwicklung der PKW-Neuzulassungen bis 2030
- China als größter Automobilmarkt der Welt

Dekarbonisierung und Verkehr

Verkehr ist der einzige Sektor mit steigender CO₂ Belastung

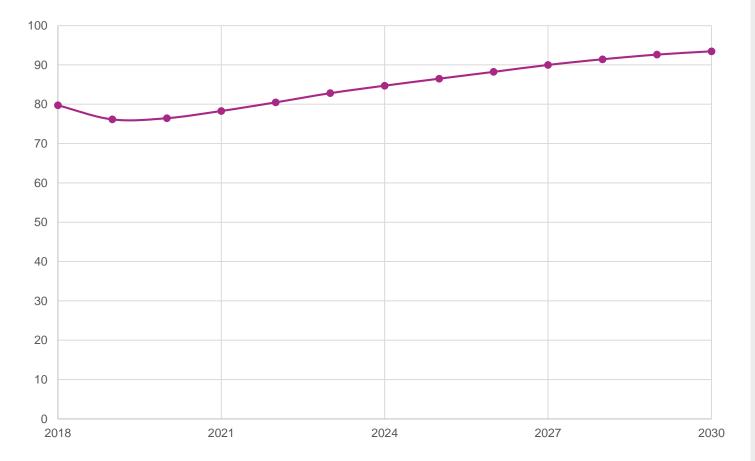
Land-, Forstwirtschaft
Fischerei



- Verkehr und Transport CO₂ Emissionen steigen seit 1990 und sind bis 2016 um 25% gestiegen
- 23% der weltweiten CO₂ Emissionen werden durch Verkehr
 /Transport erzeugt
- 40% der weltweiten CO₂ Emissionen werden durch den
 Energiesektor verursacht

Globale Emissionsregulierungen und Auswirkungen

Erwartete Strafzahlungen der Automobilhersteller 2021



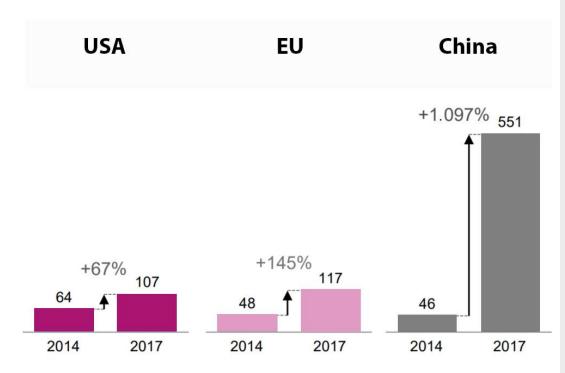
Weltweite strengere Grenzwerte ab 2021

- Reduktion der CO₂-Emissionen von
 ca. 27% auf 95 g CO₂/km in 2021
- Nur wenige Hersteller können aus heutiger Sicht die Emissionsgrenzwerte erreichen.
- Keiner der deutschen
 Automobilhersteller wird die
 Grenzwerte erreichen können.
- Die Strafen sind der größte Treiber für die Elektrifizierung der Fahrzeugflotte.

Globale PKW Neuzulassungen bis 2030

Traditionelle Automobilindustrie unter Druck

2018


- 80 Millionen Personenkraftwagen
- Automobilindustrie unter Druck
 - Stark abschwächendes Wachstum
 - Hoher Investitionsdruck in Richtung Elektromobilität

2030

- Angenommener Anstieg auf mehr als 90 Millionen
- Abflachung aufgrund von neuen Mobilitätslösungen (CarSharing / Ride-Hailing)
- Nicht berücksichtigt:
 - Nicht geordneter Austritt des Vereinigten Königreichs aus der EU
 - Zukünftige Strafzölle für
 Fahrzeugexporte aus Europa in die
 USA

Chinas globale Rolle für die Automobilwirtschaft

China bestimmt die Richtung

Neuzulassungen von batteriebetriebenen Elektrofahrzeugen in USA, EU und China 2014 bis 2017

China dominiert die Fahrzeug-Produktion ...

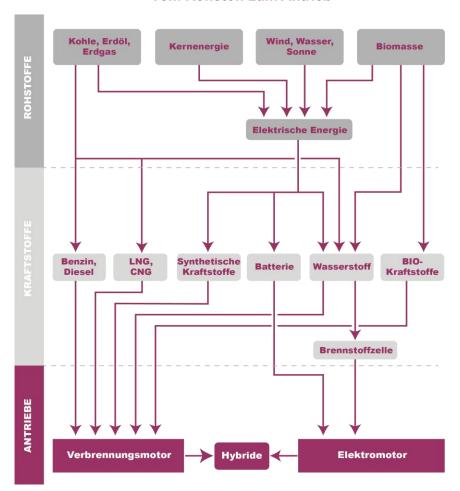
- ... ist Weltmarktführer in der Fahrzeug-Produktion
- ... ist Weltmarktführer in der Elektrofahrzeug-Produktion
- ... ist Weltmarktführer in der Fahrzeugbatterie-Produktion

China dominiert den Fahrzeug-Markt...

- ... ist der weltgrößte Fahrzeug-Markt
- ... ist der weltgrößte Elektrofahrzeug-Markt
- ... ist der weltgrößte Ride-Hailing der Welt

Antriebstechnologien und Szenarien

- Referenzfahrzeuge (Antriebsarten)
 - Verbrennerfahrzeuge
 - Elektrofahrzeuge
- Szenarien 2030



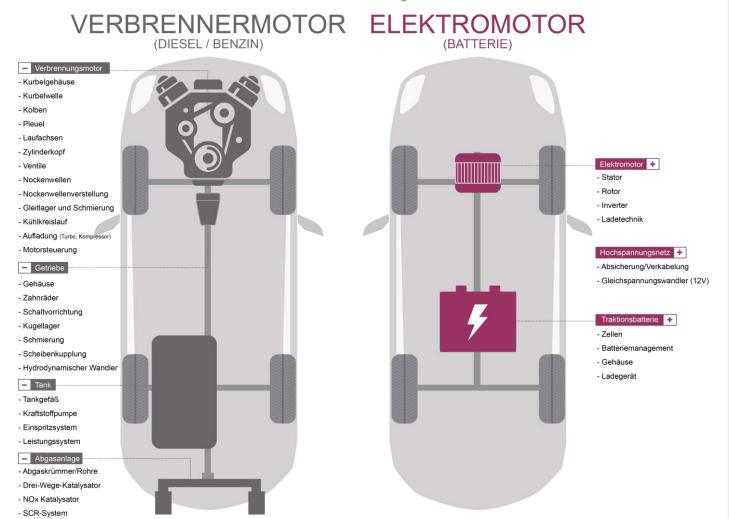
Klassifizierung der Antriebsarten

Ableitung der Referenzfahrzeuge

Vom Rohstoff zum Antrieb

Verbrennerfahrzeuge gliedern sich in

- Verbrennungsmotor (Diesel/Benzin)
- Verbrennungsmotor (Gas)
- Hybrid-Systeme (PHEV)

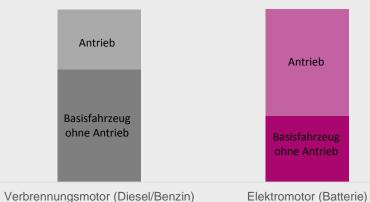

Elektrofahrzeuge gliedern sich in

- Elektromotor (Batterie)
- Elektromotor (Brennstoffzelle/H2)

COUNCIL4 ROBUST DECISION MAKING

Verbrennerfahrzeug vs. Elektrofahrzeug

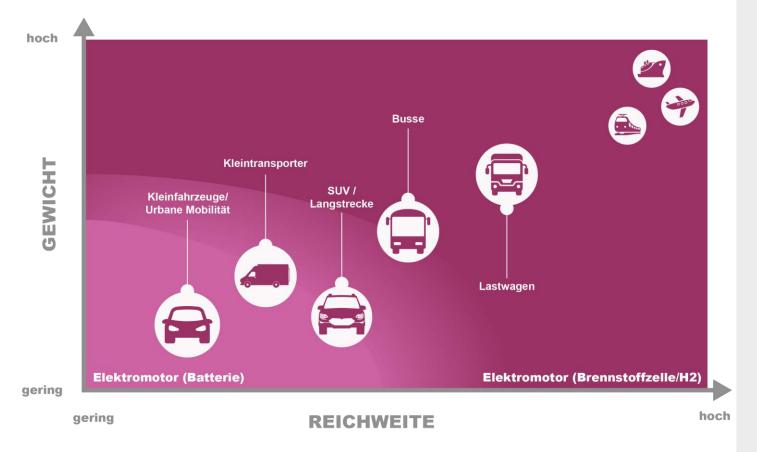
Sehr viele Bauteile werden nicht mehr benötigt



Komplexitätsreduktion

- bis zu 2.000 Einzelteile beim Verbrennungsmotor
- bis zu 300 neue Einzelteile beim Elektromotor

Herstellungskosten


 teurer Antrieb inkl. Batterie beim Elektrofahrzeug

COUNCIL4 ROBUST DECISION MAKING

Einsatzgebiete von Elektrofahrzeugen

Batterie <u>und</u> Brennstoffzelle statt Batterie vs. Brennstoffzelle

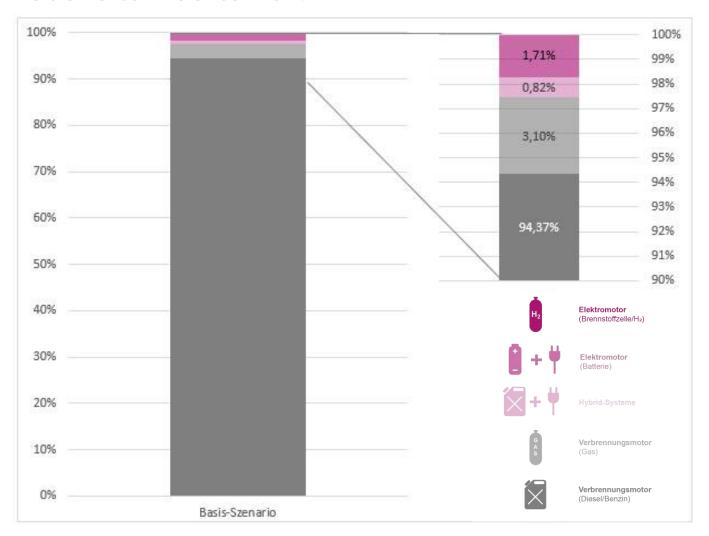
Beide Antriebsarten werden nebeneinander existieren und stehen in keiner Konkurrenz zueinander.

Elektromobilität ideal für

- Stop-and-Go Verkehr (Stadt)
- Geringe Lasten
- Kurze Strecken

Brennstoffzelle ideal für

- Schwere Fahrzeuge (SUV, Busse, LKW)
- Lange Strecken (Pendler)

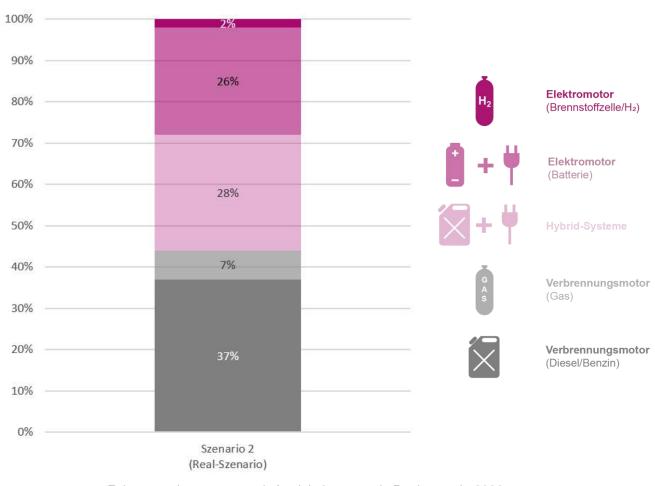

Einsatzgebiete von Batterie und Brennstoffzelle

ANTRIEBSTECHNOLOGIEN UND SZENARIEN

COUNCIL4 ROBUST DECISION MAKING

Ausgangslage 2018

Verbrenner dominieren den Markt

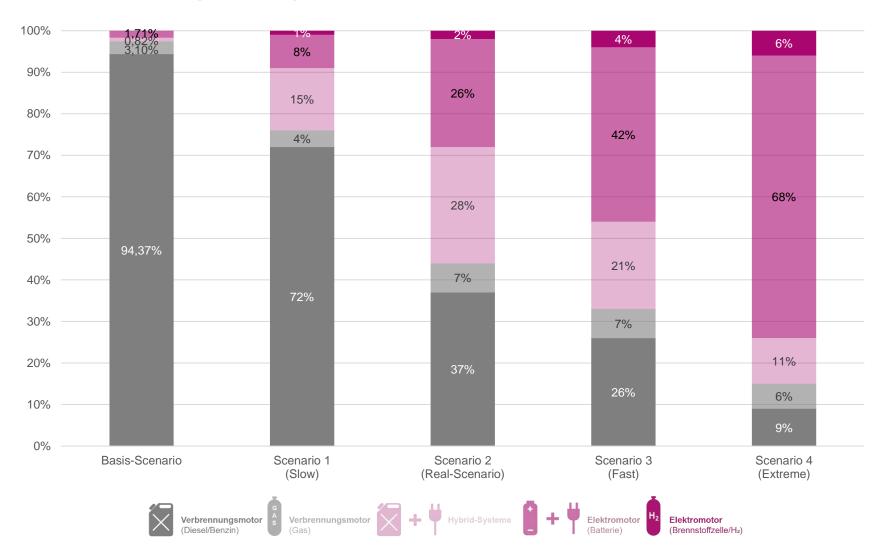

- Elektromobilität in den Startlöchern
- Wasserstoff aufgrund von mangelnder Infrastruktur und Fahrzeugen noch keine Marktrelevanz
- Bei Gasfahrzeugen ist ein positiver
 Wachstumstrend erkennbar

ANTRIEBSTECHNOLOGIEN UND SZENARIEN

COUNCIL4 ROBUST DECISION MAKING

Real-Szenario 2030

Prognostizierte Entwicklung der vorliegenden Studie



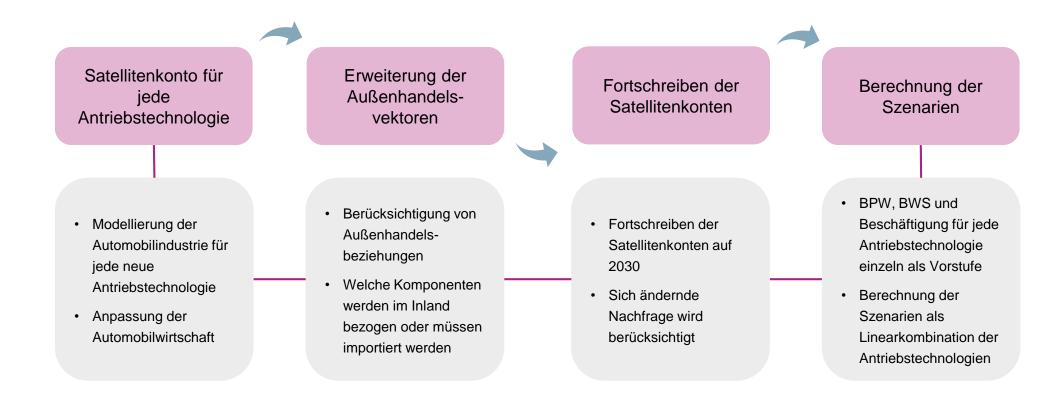
- Der Verbrenner wird zurückgedrängt bleibt aber Platzhirsch
- Die Industrie hat den Strukturwandel hin zu Elektromobilität geschafft
- Wasserstoff und batterieelektrische Fahrzeuge erreichen einen Marktanteil von 28%
- Gasfahrzeuge und Hybride könnten als Brückentechnologien helfen die CO₂-Ziele der Hersteller zu erreichen
- Wasserstoff steht vor dem Durchbruch

Alternative Szenarien 2030

Die Transformationsgeschwindigkeit bestimmt die alternativen Szenarien

Wirtschaftliche Effekte 2030

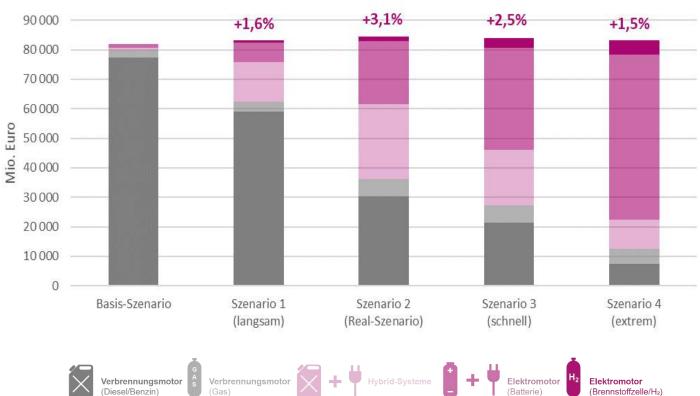
- Bruttoproduktionswert
- Bruttowertschöpfung
- Beschäftigung



Erweiterungen des Modells

Übersetzung des technologischen Wandels in die volkswirtschaftliche Gesamtrechnung

Mehrere Schritte sind nötig:



WIRTSCHAFTLICHE EFFEKTE 2030

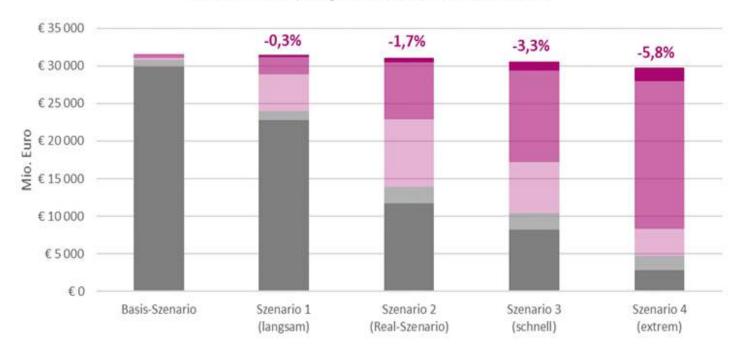
Bruttoproduktionswert der Automobilwirtschaft

Der Schein trügt

Bruttoproduktionswert der Automobilwirtschaft, 2030

Basis-Szenario

82 Mrd. Euro


- Alle Szenarien weisen einen Anstieg auf
- Das Real-Szenario (Szenario 2) lässt mit +3,6% das höchste Plus erwarten
- Aber Vorleistungen verzerren das scheinbar positive Bild. Diese werden vielfach importiert werden (müssen)

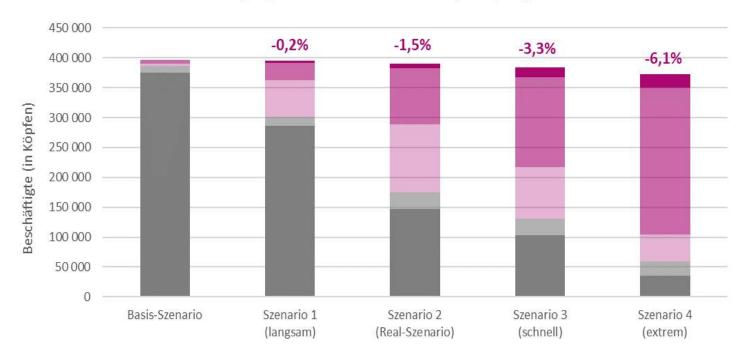
WIRTSCHAFTLICHE EFFEKTE 2030

Bruttowertschöpfung Automobilwirtschaft

Österreich ist für einen raschen Wandel nicht gewappnet

Bruttowertschöpfung der Automobilwirtschaft 2030

Basisszenario


Bruttowertschöpfung von 31,58 Mrd. Euro

- Wertschöpfungsverlust von knapp 2 Mrd. Euro ist möglich
- Bruttowertschöpfungs-Multiplikator: 1,69
- Je schneller sich der Wandel in den Antriebstechnologien hin zur Elektrifizierung vollzieht, desto größer der Verlust

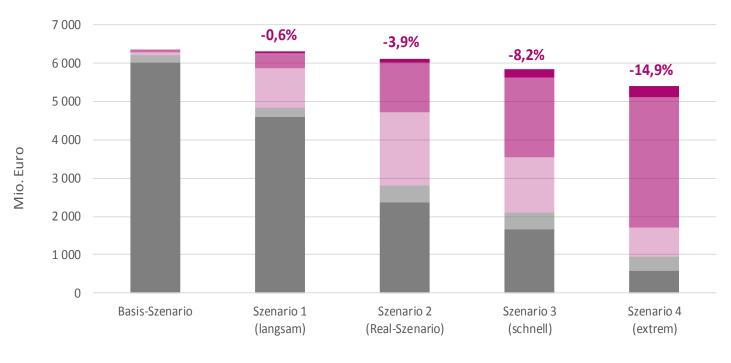
Beschäftigungseffekte in der Automobilwirtschaft

Noch stärkere Rückgänge im Bereich der Beschäftigung

Beschäftigung der Automobilwirtschaft (in Köpfen), 2030

Basisszenario

Knapp 397.000 Beschäftigte


- Beschäftigungsverlust beläuft sich im Real-Szenario auf knapp 8.000 Jobs, bei extremer Elektrifizierung auf mehr als 24.000 Jobs
- Beschäftigungs-Multiplikator: 1,91
- Jeder Job, der in der Automobilwirtschaft verloren geht, kostet noch knapp einen weiteren Job im Rest der Wirtschaft

WIRTSCHAFTLICHE EFFEKTE 2030

Bruttowertschöpfung Automobilindustrie (Sektor 29)

Am stärksten betroffen ist die Automobilindustrie

Bruttowertschöpfung des Sektor 29, 2030

Basisszenario

Direkte BWS: 4,05 Mrd. Euro Indirekte BWS: 1,86 Mrd. Euro

Induzierte BWS: 0,47 Mrd. Euro

Direkte Beschäftigung: 29.800

Gesamt-Beschäftigung: 61.700

- Verlust an Wertschöpfung könnte knapp 1 Mrd. Euro betragen
- Beschäftigungsminus beläuft sich im Real-Szenario auf mehr als 1.100 Jobs, in Szenario 4 auf mehr als 8.000 Jobs
- Beschäftigungs-Multiplikator: 2,08

Resümee und Handlungsableitungen

Quo vadis, Automobilwirtschaft Österreich?

- Der ökonomische Fußabdruck® der Automobilwirtschaft in Österreich ist systemrelevant, aber (noch) nicht auf raschen Wandel vorbereitet
- Verbrennungsmotoren bleiben die größte Antriebsgruppe bis 2030
- Die Geschwindigkeit und Intensität der Elektrifizierung bestimmen positive oder negative Effekte
- Österreich hat viel Know-How, erfolgreiche Unternehmen und gute geografische Voraussetzung für die Energiewende
- Strukturwandel braucht Anpassungszeit

Österreich gewinnt durch die Mobilitätswende

Politik ist gefordert ...

- Politik muss Weichen stellen und Rahmen schaffen, damit österreichische Unternehmen vom Wandel und neuen Märkten profitieren
- Sektorübergreifender "Masterplan Mobilitätswende" begleitet von
 Wissenschaft und unabhängigen Experten anstatt überstürzte Interventionen

Das Rennen ist eröffnet ...

- Die besten Köpfe und Talente nach Österreich holen.
 Aus- und Weiterbildungsoffensive der vorhandenen Fachkräfte
- Innovationsoffensive im Bereich nachhaltiger und erneuerbarer Antriebstechnologien

Partizipation am Wachstumsmarkt statt Schadensbegrenzung

- Durch Schwerpunktsetzungen und Clusterbildung kritische Größen erreichen. Partizipation an internationalen Erfindernetzwerken
- Die begleitende Energiewende als zentrale Forderung für die Elektromobilität. Potentiale der grünen Energie für Wasserstoff- und Green-Gas-Produktion nutzen

Autoren-Team:

- Dr. Hans-Peter Kleebinder,
 - Unabhängiger Mobilitätsexperte, Speaker/Kurator und Studienleiter Smart Mobility Management an der Executive School der Universität St. Gallen
- **Dr. Anna Kleissner**, Senior Researcher, Mitglied des Vorstands, Economica Institut für Wirtschaftsforschung
- Dr. Christian Helmenstein,
 Leiter Economica Institut f
 ür Wirtschaftsforschung
- Ing. Michael Semmer BSc BSc,
 Inhaber Michael Semmer Advisory,
 Doppel-Masterand Tongji University in Shanghai und Technische Universität Graz